AWS Certified Big Data - Specialty (#41)

A gas company needs to monitor gas pressure in their pipelines. Pressure data is streamed from sensors placed throughout the pipelines to monitor the data in real time. When an anomaly is detected, the system must send a notification to open valve. An Amazon Kinesis stream collects the data from the sensors and an anomaly Kinesis stream triggers an AWS Lambda function to open the appropriate valve. Which solution is the MOST cost-effective for responding to anomalies in real time?

Attach a Kinesis Firehose to the stream and persist the sensor data in an Amazon S3 bucket. Schedule an AWS Lambda function to run a query in Amazon Athena against the data in Amazon S3 to identify anomalies. When a change is detected, the Lambda function sends a message to the anomaly stream to open the valve.
Launch an Amazon EMR cluster that uses Spark Streaming to connect to the Kinesis stream and Spark machine learning to detect anomalies. When a change is detected, the Spark application sends a message to the anomaly stream to open the valve.
Launch a fleet of Amazon EC2 instances with a Kinesis Client Library application that consumes the stream and aggregates sensor data over time to identify anomalies. When an anomaly is detected, the application sends a message to the anomaly stream to open the valve.
Create a Kinesis Analytics application by using the
RANDOM_CUT_FOREST
function to detect an anomaly. When the anomaly score that is returned from the function is outside of an acceptable range, a message is sent to the anomaly stream to open the valve.